A Padé approximate linearization algorithm for solving the quadratic eigenvalue problem with low-rank damping

نویسندگان

  • Ding Lu
  • Xin Huang
  • Zhaojun Bai
  • Yangfeng Su
چکیده

The low-rank damping term appears commonly in quadratic eigenvalue problems arising from physical simulations. To exploit the low-rank damping property, we propose a Padé approximate linearization (PAL) algorithm. The advantage of the PAL algorithm is that the dimension of the resulting linear eigenvalue problem is only nC `m, which is generally substantially smaller than the dimension 2n of the linear eigenvalue problem produced by a direct linearization approach, where n is the dimension of the quadratic eigenvalue problem, and ` and m are the rank of the damping matrix and the order of a Padé approximant, respectively. Numerical examples show that by exploiting the low-rank damping property, the PAL algorithm runs 33–47% faster than the direct linearization approach for solving modest size quadratic eigenvalue problems. Copyright © 2015 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pade Approximate Linearization for Solving the Quadratic Eigenvalue Problem with Low- Rank Damping

The low-rank damping term appears commonly in quadratic eigenvalue problems arising from physical simulations. To exploit the low-rank damping property, we propose a Padé Approximate Linearization (PAL) algorithm. The advantage of the PAL algorithm is that the dimension of the resulting linear eigenvalue problem is only n+ lm, which is generally substantially smaller than the dimension 2n of th...

متن کامل

Solving Rational Eigenvalue Problems via Linearization

The rational eigenvalue problem is an emerging class of nonlinear eigenvalue problems arising from a variety of physical applications. In this paper, we propose a linearization-based method to solve the rational eigenvalue problem. The proposed method converts the rational eigenvalue problem into a well-studied linear eigenvalue problem, and meanwhile, exploits and preserves the structure and p...

متن کامل

A Vibration Damping Optimization Algorithm for Solving the Single-item Capacitated Lot-sizing Problem with Fuzzy Parameters

In this paper, we propose a vibration damping optimization algorithm to solve a fuzzy mathematical model for the single-item capacitated lot-sizing problem. At first, a fuzzy mathematical model for the single-item capacitated lot-sizing problem is presented. The possibility approach is chosen to convert the fuzzy mathematical model to crisp mathematical model. The obtained crisp model is in the...

متن کامل

A Krylov Subspace Method for Quadratic Matrix Polynomials with Application to Constrained Least Squares Problems

We present a Krylov subspace–type projection method for a quadratic matrix polynomial λ2I − λA − B that works directly with A and B without going through any linearization. We discuss a special case when one matrix is a low rank perturbation of the other matrix. We also apply the method to solve quadratically constrained linear least squares problem through a reformulation of Gander, Golub, and...

متن کامل

About One Sweep Algorithm for Solving Linear-Quadratic Optimization Problem with Unseparated Two-Point Boundary Conditions

In the paper a linear-quadratic optimization problem (LCTOR) with unseparated two-point boundary conditions is considered. To solve this problem is proposed a new sweep algorithm which increases doubles the dimension of the original system. In contrast to the well-known methods, here it refuses to solve linear matrix and nonlinear Riccati equations, since the solution of such multi-point optimi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015